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Separation of the Massless Spin-1 Equation in 
Robertson-Walker Space-Time 

A n t o n i o  Z e c e a  I 

Received June 17, 1995 

The massless spin-I free field equation is studied via the Newman-Penrose 
formalism and separated by the Chandrasekhar-Teukolski method. The temporal 
and angular equations are explicitly integrated. The radial equations are solved 
in the fiat-universe case. The closed-universe case shows, in principle, the 
existence of a discrete spectrum of the energy of the massless particles. 

1. I N T R O D U C T I O N  

It is well known that the massless free field equation can formally be 
written in curved space-time in a general way for arbitrary spin. In the context 
of the Newman and Penrose (1962) formalism this is done in terms of the 
equation (Penrose, 1965) 

A 
VAA'~bBC...L : 0 ,  ~bABC...L : *(ABC...L) (1 )  

The study of  equation (1) is of  interest because it involves as particular 
situations the Bianchi identity in empty space (s = 2, gravitons), the source- 
free Maxwell equations (s = 1), and the Dirac-Weyl  equation for the neutrino 
(s = 1/2) (Penrose and Rindler, 1986). 

The formulation (1) is consistent in general for s = 1/2 and s = 1. It 
is inconsistent already in Minkowski space in the case of  electromagnetic 
interaction (Fierz. and Pauli, 1939) and in general for s > 1 unless the space- 
time is conformally flat (Buchdahl, 1958, 1962); W0nsch, 1978; Penrose and 
Rindler, 1986). A possible way to overcome these difficulties in a uniform 
manner has been proposed in terms of symmetrized field equations (Buchdahl, 
1982; WUnsch, 1985; Illge, 1988, 1992, 1993). 
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The solution of equation (1) can be explicitly given in a conformally 
flat space-time for arbitrary spin (Penrose and MacCallum, 1972; Penrose 
and Rindler, 1986) and it was just the study of this solution that motivated 
the development of the twistor formalism (Penrose, 1968). 

In the present paper we study explicitly equation (1) for spin s = 1 in 
the case of the Robertson-Walker space-time. The solution of equation (1) 
we propose is different from the mentioned general one for arbitrary spin 
when specialized to the present case. By applying a method similar to that 
used by Chandrasekhar to solve the Dirac equation in the Kerr metric (Chan- 
drasekhar, 1983), we are able to completely separate in equation (1) the 
temporal and angular dependences of the wave function for s = 1. The 
resulting time equation can be formally integrated. The integration, however, 
depends on the knowledge of the dynamics of the cosmological background. 
Also, the angular equations are integrated, since they reduce to known equa- 
tions of mathematical physics. The radial equations are explicitly integrated 
in the flat-universe case. 

The final angular equations turn out to be independent of the space 
curvature of space-time, namely of whether the universe is closed, fiat, or 
open, while the radial equations do strictly depend on this property. In particu- 
lar, the final radial equations of the closed-universe case support the existence 
of discrete values of the integration constant relative to the separation of the 
time dependence. By analogy with the neutrino case (Montaldi and Zecca, 
1994), we interpret this constant as the energy of the massless particle of 
the field. 

2. F O R M U L A T I O N  IN THE ROBERTSON-WALKER 
GEOMETRY 

We take equation (1) explicitly for s = 1 and in the case of the Robertson- 
Walker metric of the form 

[ dr------~-2+r2(dO2+sin20 dqb2)] (2) ds2  = dr2 - R2(t) 1 - a r  2 

We apply to it the Newman-Penrose formalism (Newman and Penrose, 1962) 
by adopting Chandrasekhar's notations and mathematical conventions. We 
choose as null tetrad frame { l i, n i, m i, m *i } the one whose associated directional 
derivatives are given by 

1 
D ---- liOi = --~ [0 t q" R-l(1 - arE)ll2Or] 

l 
A - -  niOi = -~_ [0t - R-1(1 - ar2)l/EOr] 
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1 
8 ~ "  m i O i  - -  vzmrR (0o + i csc 00+) 

1 
8"  ~ m*iOi = ~ (0o - i csc 00+) (3) 

, / z r t~  

and whose  corresponding nonzero  spin coeff icients  are g iven by (Montaldi  
and Zecca,  1994) 

1 _ cot 0 
p - x /~r  R [r[~ + (1 - ar2)lt2], [3 = -c~ 2 x / ~ r R  

l R 
Ix - ,v/~rR [rR - (1 - ar2)l/2], ~ = -~ /  - 2x/~ R (4) 

By using in equat ion (1) the relation VAX, = O'aAx,Va and by mak ing  explicit  
the express ions  o f  the covar iant  der ivat ives  in te rms o f  the tabulated spin 
coefficients  (Chandrasekhar ,  1983; Penrose  and Rindler, 1986) and with the 
usual identifications D =- 0oo,, 8 =-- 0or,  8"  - -  01o,, A = 01r, we find 
the equat ions 

(D - p)~blo -- (8* -- 2et)dpoo - P6ol = 0 

(D - p + 2e)~blt + 8"6ol = 0 

8dOlo - (A -- 2~/ + Ix)dPoo = 0 

(8 + 213)611 - (A + Ix)61o - Ix6Ol = 0 (5) 

which must  be solved for  the symmet r i c  spinor  6An = d~BA. 

3. SEPARATION OF THE E Q U A T I O N S  

The  ~b dependence  can be  directly separated in equat ions (5) by the 
substitution ~bAn --~ #PAn exp(im~b) (m = O, -+ 1, _+2 . . . .  ) to get  

rRx/ '2(O - 2p)~blo - Li-~boo = 0 

r R , / ~ ( D  - p + 2 e ) 6 .  - / 4 6 , 0  = 0 

- r R v / 2 ( A  + IX - 2"y)~boo + Lffqblo = 0 

- r R v / 2 (  A + 2ix)6,o + Li~d~11 = 0 (6) 

where  

L~ = Oo -7- m csc 0 + n cot 0 (7) 
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and d~AB depends now on the variables r, 0, t. By setting 

~oo = ~o(r)So(O)T(t) 

(~01 = (~10 : dpt(r)Sl(O)T(t) 

d~ll = d~2(r)S2(O)T(t) (8) 

in equations (6) the separation of  the 0 dependence gives the equations 

L-{So = h lS i ,  Lo-Sl : h2S2 

Z f f S I  = ~k3So, L{S2  : )k4S1 (9) 

hi, h2, ~-3, h-4 are the relative separation constants. The corresponding surviving 
equations in the r, t variables can be further separated, with separation constant 
ik (k �9 R), giving 

/,  
i k =  - ~ . R -  2R 

dp~ 2 ar2)Wz kt d~o ik = (1 - ar2)li2-~, + - ( 1  - 
r r ~1 

~b~ 1 ar2)l/2 k 2 ~b 1 ik = (1 - ar2) lcz -~2 + - (1 - 
r r dt) 2 

ik = - ( 1  - ar2) lrz d?_~ _ 1 (1 - ar2) 1t2 k3 ~bl 
~o r r dp 0 

ik = - ( 1  - ar2) 1/2 dp'l _ 2_ (l - ar2) it2 h4 t~ 2 (10) 

where use has been made of the explicit form (3), (4) of the directional 
derivatives and of  the spin coefficients, respectively. 

The integration of  the time equation gives 

T(t) = T(O) R - - ~  exp - i k  R(t ' )J  (11) 

which depends on the particular choice of  the underlying cosmological model 
which determines the structure of  the function R(t). Instead, the r and 0 
equations are independent of  such a choice. 

4. THE ANGULAR EQUATIONS 

Equations (9) imply four second-order equations each involving only 
one function among So, $I, and $2 plus two coupled second-order equations 
in the pair of  functions So, $2. However, by taking into account that 
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L~Lo- = Li-Lff (12) 

as can be directly checked from the definition (7), by assuming the condition 

h l h  3 = h 2 h  4 = - h  2 

one is l e f i w i t h t h e t h r e e  independent equations 

L?I-~SI = -X2S1 

Lo-LtS2 = -k2S2 

L ?  So = - X2S0 

(13) 

(14a) 

(14b) 

(14c) 

With regard to the integration, we remark that equation (14b) gives equation 
(14c) after the substitution m ~ - m .  

We are therefore looking for solutions of  equations (14a) and (14b) that 
are regular in 0 = 0 and 0 = "rr. By using the explicit expression (8) and 
then by setting ~ = cos 0, we find that equation (14a) becomes 

2~ k2(l _ ~2) _ m 2 
s~' + ~2---C~ s~ + (1 - ~2)2 s~ = 0 (15) 

whose acceptable solutions corresponding to h 2 = lt(ll + 1) are the associated 
Legendre functions (Abramovitz and Stegun, 1970) 

S~(0) = (1 - ~2)'m'r2P~q(O, = I m l ,  Iml + 1, [ml + 2 . . . .  (16) 

With regard to equation (14b), after using equation (7), it takes the form 

S,~ + cot O S~ + ( 2m c~ O - l - m 2  ) 
sin20 + X 2 $2 = 0 (17) 

For its solution let us first consider the case m -> 1. By setting 

$2 = (1 - ~)~ + O0"+lv2f2(~), ~ = cos 0 (18) 

one finds for f2 the equation 

(1 - ~z)f,~ + 211 - ~ (m + l ) ] f ~  + [k  2 - m(m + 1) ] )~  = 0 (19 )  

whose acceptable solutions corresponding to k 2 = /2(12 + 1) can be written 
in terms of  Jacobi polynomials (Abramovitz and Stegun, 1970) so that 

= a~,~+ l)a o~,,+ l,,~- 1)~^o 0) (20) S2,12,m (1 -- cos o)Cm-I)/2(l + COS ~,s "t2-m tt,~,~ 

re - ->l ,  12 = m , m  + 1, m + 2  . . . .  

If m -- -- l, it suffices to replace [see equation (17)] m by I m I and ~ by -~ .  
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Thus, apart f rom an irrelevant factor  [recall that Pt~ 'a)( -x)  = ( - ) "  
,~2.~)(x)], 

$2.,2~, = (1 + cos O)('m'-')/2(1 - cos O)(Iml+l)12P~m-Ii~n:"ml+l)(cos O) 

m <-- - 1 ,  /2 = Iml, Iml + 1, [ml + 2 . . . .  (21) 

If  now m = O, by setting 

$2 = (1 - ~2)u2f2(~), ~ = cos 0 (22) 

in equation (17), we find in a similar way 

$2,t2.o(0) sin 0 . . t )  = PI2+2(cos 0), 12 = 0, 1, 2, 3 . . . .  (23) 

which corresponds here to k 2 = (/2 + i)(/2 + 2). 
Finally, by combining the results relat ive to all the angular equations,  

we see that the possible values o f  h 2 are o f  the fo rm k 2 = l(l + 1), l = 1, 
2 , 3  . . . . .  

5. T H E  R A D I A L  E Q U A T I O N S  

Defining the operators 

Ab = (1 -- ar2)  u2 d + b (1 - ar2)  It2 - ik 
dr r 

which can be easily shown to have the propert ies 

A*ab = aba*, a*rA2 = AirA* 

we can write equations (10) compact ly  as 

A2~bl = k-! ~o, AIdP2 = h---~2 dPl 
r r 

(b e R) (24) 

(25) 

Here six second-order  equations can be der ived f rom equations (26) that 
must  be satisfied by the functions d~0, d~l, ~b2. However ,  by using equation 
(25) and the condit ion (13), one can easily check  that the solution o f  the 
equations is reduced to the study o f  the three independent  equations 

Aa rA * d?o ~k 2 = - -  d~o (27a) 
r 

A* rA2dpl k2 = - -  ~bt (27b) 
r 

A,~b ~ _ - k 3  $1, A~bt  = - ~ k 4  1~)2 (26) 
r r 
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A~ rAld~2 h2 = - -  dp2 (27c) 
F 

Furthermore, if d~0 satisfies equation (27a), then, by taking the complex 
conjugate equation, we have that ~b~' satisfies equation (27c). Therefore we 
can confine ourselves to looking for solutions of equations (27a) and (27b). 
By using the definition (24), we find that equations (27a) and (27b) 
become, respectively, 

r(l - ar2)d~ + +~(4 - 5ar 2) 

+ +o(k2r - 3ar + - -  
\ 

2 - k 2 ) 
+ 2ik(1 - ar2) u2 = 0 (28a) 

F 

-a rZ)d f l  ' + dp~(4- 5ar z) + + t ( k Z r -  4ar + 2  Xz] = 0  (28b) r(l  
\ F / 

which both fall into the class of Fuchs equations (e.g., Moon and Spencer, 
1961) and have therefore the behavior 

d~a(r) = rt~4xz+l)ta-31:zfa(r, kZ), d = 0, 1 (29) 

near r = 0, fa being there a regular function. If one assumes the conditions 
d~o(0) = dOl(0) = 0 which naively follows from the nature of the radial 
equations, then the acceptable solutions d~a are those for which 4k 2 + 1 > 
9 o r b  2 = l ( l +  1) with now l = 2, 3, 4 . . . . .  

The ease a = 0 is the only case in which we are able to solve equations 
(28) completely. Indeed, by setting 

qbd(r) = r [ (4h2+1)1/2-3] /2  exp(- ikr)Za(r) ,  d = 0, 1 (30) 

in equations (28a) and (28b) and then ~ = 2ikr in the resulting equations, 
we get the confluent hypergeometric equations 

~Z] + [1 + (4k 2 + 1) u2 - ~]Z~ 

- -  1 [(4k 2 + 1)~t 2 + 2d - 1]Zd = O, d = O, 1 (31) 
2 

Therefore we have 

Zd(r) = ~ (4h 2 + 1) 1/2 + d + ~ ; 1 + (4h 2 + 1)1/2; 2ikr (d = 0, 1) 

for the acceptable solutions. 
Finally, the ease a - 1 is of particular interest. The solutions of equations 

(28) are subject in this case to the additional constraints dOd(1) = 0, d = O, 
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1, which follow from equations (10), h, k being independent constants. 
Equivalently, from equation (29), we have 

f,t(1, k 2) = 0, d = 0, 1 (32) 

In principle both the equation f0(1, k a) = 0 andfl(1, k 2) = 0 are satisfied by 
a discrete set of values of k 2. It is an open question to establish whether the 
problem has a solution, namely of determining the ~ common elements. 

6. CONCLUSIONS 

The method employed in the previous sections, which is an extension 
of the Chandrasekhar-Teukolski method used in the separation of the Dirac 
equation in the Kerr geometry (e.g., Chandrasekhar, 1983), involves the 
consideration of the two separation constants h 2 and k. The constant k 2 
represents the eigenvalue of the angular equations, as is evident from equations 
(14). The solutions of these equations are the extension to the spin-1 case 
of those relative to the Dirac equation both in the Kerr metric (Chandrasekhar, 
1983) as well as the Robertson-Walker metric (Montaldi and Zecca, 1994; 
Zecca, 1995). With regard to the constant k, we interpret ~ to give the energy 
of the massless particle. This is supported by the structure of the time solution 
(11) even if the radial equations (10) do not have the explicit form of a 
Schrtdinger-like eigenvalue problem, as directly follows for the Dirac equa- 
tion in the Kerr geometry case (Chandrasekhar, 1983) or for the neutrino in 
the Robertson-Walker metric (Montaldi and Zecca, 1994). According to this 
interpretation, it is of interest that the closed-universe case admits, in principle, 
the existence of discrete values of the energy of the particles, a property 
already tested both for the neutrino and the electron of the Dirac equation 
in the Robertson-Walker metric (Montaldi and Zecca, 1994; Zecca, 1995). 

By coming back to the general case, the problem is open whether 
equation (1) can be separated, by means of the Chandrasekhar method, in 
the Robertson-Walker metric also for values of the spin s > 1. 

Finally, according to the previous interpretation of k 2, it is also an open 
problem whether the discrete spectrum of the energy of the particle is a 
general property that holds in the closed-universe case for arbitrary spin. 
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